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The refractive indices of benzene in the gas and liquid phase are computed employing a classical
electrodynamical treatment of light propagation in continuous media and high level ab initio computations of
the relevant molecular properties. We investigate various levels of complexity when deriving expressions
relating the microscopic molecular optical properties and the refractive index. Different methods of accounting
for the molecular environment within the framework of quantum chemical computations are scrutinized. The
fundamental molecular property determining the refractivite index is the polarizability, and dynamic molecular
polarizabilities of benzene are adequately computed using a triple-zeta plus double polarization basis; larger
basis sets change the computed values by less than 1%. The effects of electronic correlation on the dynamic
polarizabililties are discussed. For benzene vapor, computed results for the refractive index agree well with
experiment. For liquid benzene, the best agreement with experiment is found using the Lorentz-Lorenz formula
with computed gas-phase polarizability. We introduce the isolated molecule classical environment (IMLE)
and the iterative self-consistent reaction field approach.

I. Introduction

The refractivity or the refractive index of a material is the
most visible result of the optical properties of its constituent
components. The importance of refractivity stems not only from
its presence in all transparent matter, but also from the wide
technological applicability of optical devices, which rely
themselves on specific properties of the refractive index, for
such applications as optical fibers or optical coatings.

For design of optical devices, where the refractive index is
the phenomenon of relevance, effects such as its intensity
dependence, dispersion, degree of nonlinearity, and susceptibility
to external fields are important. Phenomenological understanding
of these effects is available, but first-principles theoretical
prediction of these quantities has lagged. Despite the rather
advanced quantum chemical tools now available, little effort
has been put into quantitative description of refractivity. We
address here the issues involved in understanding and theoreti-
cally describing the refractive index for the condensed phase,
using first principles. When computing the refractive index of
any material, ideally one should address the following issues:
(i) the relationship between the refractive index and various
macroscopic electric and magnetic susceptibilities; (ii) the
connection between the microscopic and the corresponding
macroscopic susceptibilities; (iii) the computation of the dis-
persive microscopic molecular susceptibilities, linear or non-
linear; (iv) the incorporation of the molecular environment; (v)

the statistical mechanical concerns needed when deriving
properties of the bulk; (vi) the time scales for the different
degrees of freedom involved in the optical processes. In this
preliminary contribution we begin by describing the refractive
index as simply as possible, only gradually increase the
complexity, then allowing for a rigorous understanding of the
various components involved in the computation of refractive
indices.

In section II we discuss the classical electrodynamical
approach to calculation of refractivety-the approach of prefer-
ence in the present work. We present a generalization of the
equations describing linear materials and subsequently consider
the case of pure electric and magnetic responses. Well-
established expressions for the refractive indexn(ω) in isotropic
materials are given for two distinct model assumptions: 1. an
assembly of isolated polarizable units, 2. an assembly of
polarizable units interacting with a dielectric medium. For
molecular materials, the polarizable unit can be chosen as a
molecule or a cluster of molecules. Here we consider a single
molecule only. Thus, in concert with the second model,
expressions forn(ω) represent different models using classical-
electrodynamics to take into account the effects of the molecular
environment. This we term the isolated molecule classical
environment (IMCE) approach. Alternatively, one may employ
the first model (isolated polarizable units) and then incorporate
effects of molecular interactions in the quantum description of
the polarizable unit, be that a molecule or a cluster of molecules.
From a methodological point of view, one should avoid
overlapping quantum mechanical and classical models for* Author to whom correspondence should be addressed.
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describing molecular interactions. For the part of these interac-
tions, independent of the optical radiation field (referred to as
the specific interactions), this separation is straightforward, and
such complementary approaches are discussed in section II and
section III. However, the effect of the molecular surroundings,
as mediated through modulations of the optical radiation field,
lack simple quantum mechanical descriptions. This effect,
referred to as screening, consequently is treated classically in
terms of local field factors. However, using these in the
computation of optical bulk properties of pure compounds
introduces conceptual problems. Therefore, in section III we
present an iterative implementation of the multiconfigurational
self-consistent reaction field (MCSCRF) model,1 the iterative
self-consistent reaction field (ISCRF) approach, which circum-
vents inconsistencies arising from a combined local field factor
and MCSCRF model.

Prior to investigating effects of molecular interactions, the
reliability of the fundamental computations of dynamical
polarizabilities is scrutinized. Thus, extensive vacuum computa-
tions ofR(-ω,ω) for benzene are presented in order to establish
a confidence level with respect to choice of basis set and level
of correlation. The computational details are given in section
IV along with a brief review of ab initio vacuum computations
of R(-ω,ω) for benzene. Following this, we then present
quantum computations modeling the condensed phase, the
computational details of which also reside in section IV.

In section V we discuss results of polarizability computations
and compare with experimental depolarization data. Our main
objective is to learn how the different models of section III de-
scribe the refractive index. Examples of different uses of these
models are presented in section VI along with comparisons to
experiment. Finally, conclusive remarks are given in section
VII.

II. Refractive Index

The refractive indexn(ω) and the dielectric functionE(ω)
can be thought of as macroscopic, frequency dependent proper-
ties related through the Maxwell relation:2,3

The dielectric function shows a variety of characteristics in
different frequency regions, with each frequency region being
characterized by the response of particular microscopic degrees
of freedom. Symbolically, this is often written as

where the intermolecular contributions arise from translation
and rotation of molecules or molecular aggregates, and vibration
of molecular aggregates. Intramolecular contributions mainly
arise from molecular vibrations and electronic motion. As the
frequency of the external perturbation is increased, the slower
degrees of freedom freeze such that at optical frequencies or
higher, only the electronic subsystem contributes to the dielectric
function.

In the present work our concern is the dispersive behaviour
of n(ω) in the optical frequency range, which is the primary
justification for neglecting all but electronic contributions to
eq 2. We use classical electrodynamics, and consider the
propagation of electromagnetic radiation in a continuum, such
that the Maxwell equations provide an appropriate description.
On a microscopic level the material is composed of non-polar
molecules to which we assign molecular susceptibilities. These
are extracted from quantum chemical computations.

A. Fundamental Model.Consider electromagnetic radiation
propagating in an infinite medium that we shall take to be
homogeneous, nonconducting and without any free charges. The
Maxwell fields (the macroscopic average electric,E(r , t), and
magnetic,H(r , t), fields) must then obey the following wave
equation4

where we have adopted the gaussian system of units.
The wave equations do not constitute a physical model until

the macroscopic average polarization,P(r , t) and magnetization
M (r , t) governing the medium have been specified. Assuming,
a medium capable of linear responses only, the equations
generally read

and therefore represent a model where electric and magnetic
fields are linearly coupled in all possible ways. All fourø tensors
are of second rank, and eq 4, therefore, allows for describing
the linear response of any anisotropic medium. We consider
propagation of plane waves only, assuming a definite state of
linear polarization, i.e.

Upon insertion of eq 5 and eq 4 into eq 3, the wave equations
may be cast into a matrix equation with the following structure

and with the following identification of the submatrices:

For notational convenience we have introduced a matrix

that has as its off-diagonal elements components of the unit
vector k̂, defining the direction of propagation. The index of
refraction alongk̂ is then defined throughk ) (ω/c)(nk̂). Once
all susceptibilities have been specified and a direction of
propagationk̂ chosen, the refractive index is determined from

n(ω) ) E(ω)1/2 (1)

E ) Einter + Eintra (2)

∇2E(r , t) ) 1

c2

∂
2

∂t2
{E(r , t) + 4πP(r , t)} +

4π
c

∂

∂t
{∇ × M (r , t)}

∇2H(r , t) ) 1

c2

∂
2

∂t2
{H(r , t) + 4πM (r , t)} -

4π
c

∂

∂t
{∇ × P(r , t)} (3)

P(r , t) ) eeøE(r , t) + emøH(r , t)

M (r , t) ) meøE(r , t) + mmøH(r , t) (4)

E(r , t) ) E0ei(k‚r-ωt), H(r , t) ) H0ei(k‚r-ωt) (5)

(A11 A12

A21 A22
)(EH ) ) (00) (6)

A11 ) {(n2 - 1)1 - 4πeeø + 4πndmeø}

A12 ) {4πndmmø - 4πemø}

A21 ) {-4πndeeø - 4πmeø}

A22 ) {(n2 - 1)1 - 4πmmø - 4πndemø} (7)

d ) ( 0 -k̂z k̂y

k̂z 0 -k̂x

-k̂y k̂x 0
) (8)
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In deriving eq 7, the macroscopic average fields (the Maxwell
fields) inside the medium were employed. Note, however, that
eq 7 contains no reference to the magnitude of the magnetic
and electric fields. Therefore, if the susceptibilities have a
molecular origin according toømacro ) N ømicro, then the
determination ofn(ω) from eq 7 corresponds to considering a
set of noninteracting polarizable molecules, with densityN.

On a phenomenological level we can incorporate effects of
molecular interactions into the description by considering the
notion of a Lorentz effective field. In cases where electric
polarization is the predominant effect, we consider an effective
electric field to be

such that the Maxwell field is corrected with a term proportional
to the macroscopic average polarization. The Lorentz tensor3

is generally written in terms of two contributions

which model complementary types of molecular interactions.
The matrixF, called the cavity tensor, corrects the Maxwell
field arising from polarization of the medium when considered
to be a continuum and one obtains the effective field inside a
virtual cavity embedded in the dielectric medium. Information
regarding the cavity geometry and the degree of anisotropy of
the dielectric medium then is contained in the specific form of
F. Commonly, the cavity tensor,F simply is taken as

which according to the Lorentz correction5 mirrors the local
field at the center of a virtual, spherical cavity in an isotropic
dielectric medium.

The matrixT contributes to the local field the discrete part
of the molecular environment represented by some configuration
of point dipoles (or multipoles). Typically,T sums contributions
to the local field due to a finite array of point dipoles
representing neighboring molecules. In this case the tensorT
acquires a form such as6,2

As can be seen from eq 10, the effective field depends on the
current polarization state of the medium, which again depends
on the effective field. Performing the required self-consistent
procedure leads to the following effective field, referred to as
the internal field57

Rederiving eq 7, using the internal electric field instead ofE,
gives

B. Some Simplified Models.In the previous section we
formalized a method for calculatingn(ω). The full generality

has been kept so as to allow us to treat any linear optical
phenomenon in isotropic, monoaxial or biaxial optical systems.
We now specialize to the case of pure isotropic media
characterized by

where〈...〉 denotes the spatial average. A model defined through
eq 16 is only appropriate for describing the gas phase and some
liquid systems. Typically, such liquids must have a low degree
of molecular association and consist of nonpolar molecules.

Invoking the Lorentz correction, the refractive index thus
becomes

which in the case of vanishing magnetization reduces to

Without the Lorentz correction, the equivalent of eq 17 takes
the form

and in the case of vanishing magnetization, we retrieve the most
simple equation for calculating the refractive index:

III. Molecular Environment

In section II we saw that the influence of the molecular
surroundings onn(ω) may be modeled through the notion of
an internal field. By its definition, however, the internal field
does not directly address the molecular origin of the continuous
medium. To shift the focus to the molecular properties we
imagine a molecule, described by an average polarizability,R,
at the center of a Lorentz cavity. The internal fieldEi then is
the field experienced by this molecule, giving a microscopic
polarization,p ) REi. Taking the molecule in the cavity as a
representative subunit of the bulk with the macroscopic polar-
ization,P ) øE ) NREi, together with the Lorentz correction,5

gives a macroscopic susceptibility in terms of the molecular
polarizability6

Upon insertion of eq 21 in eq 20, the Lorenz-Lorentz equa-
tion7,5 results

which, on the other hand, also results from settingø ) NR in
eq 18.

Det (A11 A12

A21 A22
) ) 0 (9)

Eeff ) E + LP (10)

L ) F + T (11)

F ) 4π
3

I (12)

T ) - lim
V f ∞

∑
V

r-3(1 - 3r-2rr )
1

N
(13)

Eint ) (1 - Leeø)-1 (E + LemøH) (14)

Det (A11 - (n2 - 1)Leeø A12 - (n2 - 1)Lemø

A21 A22
) ) 0 (15)

eeø ) 〈eeø〉 ) Tr(eeø)

mmø ) 〈mmø〉 ) Tr(mmø)

emø ) 0

meø ) 0 (16)

n ) x{3 + 8πeeø}{1 + 4πmmø}
{3 - 4πeeø}

(17)

n ) x3 + 8πeeø

3 - 4πeeø
(18)

n ) x1 + 4π{eeø + mmø} + 16π2eeømmø (19)

n ) x1 + 4πeeø (20)

ø ) 3NR
3 - 4πNR

(21)

n ) x3 + 8πNR
3 - 4πNR

(22)
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The use of local field factors arises since measured optical
properties relate to the Maxwell field, whereas each molecule
is subject to the internal field. The fields are related asEi ) fE,
such that the macroscopic susceptibility becomes

where f L is the local field factor appropriate in the Lorentz
model at optical frequencies in the case of linear polarization.

The form of eq 23 allows interpretingf LR as an effective
molecular polarizability, corrected for effects of the surround-
ings. Hence, insertion of eq 23 in eq 20 should yield eq 22, as
indeed is the case.

Clearly, the Lorenz-Lorentz equation can be approached in
several ways, differing in their emphasis on the molecularity
of the medium. Note, however, that in none of these approaches
reference as to the nature ofR is made. In some approaches,
where eq 22 and its generalizations are employed,8-12 the
implicit assumption is thatR ) Rvac. This cannot be the case,
however, since the macroscopic polarization is a consequence
of the external field (for nonpolar molecules andT ) 0), and
in the absence of such there can be no internal field. Accord-
ingly, the Lorentz internal field accounts only for molecular
interactions as mediated through the optical field. All other
molecular interactions, occuring irrespective of the external field,
must therefore be included in the calculation ofR, which is
referred to asRsol. Hence, we write the refractive index as

where Reff ) f L(n)Rsol. The determination ofRsol may then
follow various IMCE methods, as covered by Bo¨ttcher2 or
recently treated by Wortmann et al.13 Alternatively, environ-
mental effects are incorporated into the quantum mechanical
derivation ofRsol, as we shall consider below. In case we neglect
the specific molecular interactions, that is to sayRsol ) Rvac, eq
24 becomes equal to eq 22. Neglecting molecular interactions
all together leads to

as appropriate only for describing the gas phase.
A. An Iterative Implementation of the MCSCRF Model.

Having considered the consequences of the Lorentz internal-
field correction, we now outline a quantum mechanical treatment
of a molecule in a spherical cavity, surrounded by an isotropic
dielectric medium.

We use the current implementation of the equilibrium
MCSCRF method1 in the DALTON program.14 This involves
solving the electronic structure for a molecular state coupled to
a polarizable, dielectric continuum in the presence of a time
dependent radiation field. Such computations require both the
specification of the radius of the cavityRcav and the dielectric
constant of the surrounding dielectric medium. Using response
theory,1,15-18 we evaluate linear molecular optical properties for
the MCSCRF state as obtained above. The MCSCRF wave
function depends on the dielectric constant of the surrounding
medium. Therefore, the molecular optical properties are also
functions of the dielectric constant. Thus, with respect to our
efforts to determinen(ω) from first principles, the MCSCRF
method is useful only if implemented iteratively. Such a
procedure is initiated by calculating the optical dielectric
constant using the polarizability for the gas phase molecule and
an appropriate relation from section III. An MCSCRF computa-

tion is then performed using this dielectric constant as input
which results in an improved molecular polarizability. Subse-
quently, a new dielectric constant is derived and used as input
in the following MCSCRF computation. This iterative proce-
dure, as illustrated in Figure 4, thus involves transitions between
the microscopic and macroscopic regimes: the MCSCRF
procedure yields molecular optical properties based on optical
bulk susceptibilities, which, on the other hand, are derived from
microscopic properties using a model from section III. The result
of this ISCRF procedure is a set of optical properties (micro-
scopic and macroscopic) determined self-consistently from first
principles.

ø ) NfL(n)R ) N(n2 + 2
3 )R (23)

n ) x1 + 4πNReff (24)

n ) x1 + 4πNRvac (25)

Figure 1. Dispersion of theoretical depolarization ratios compared with
experimentally determined depolarization ratios (Alms et al.,54 Bogaard
et al.,55 Bridge et al.,46 and Panachev et al.56). (a) Theoretical
depolarization ratios based on HF polarizabilities computed using basis
sets as indicated in the legend. (b) Depolarization ratios derived from
CAS polarizabilities and corresponding HF polarizabilities.

Figure 2. The refractive index of benzene at 293.15 K and 1 bar as a
function of frequency computed within the simple (eq 25) and the
Lorentz-Lorenz (eq 22) model for refractivities. Refractivities calcu-
lated from HF polarizabilities and densities from a virial equation47

applicable to gas phase benzene. Experimental determinations of the
refractive index of benzene vapor49 are also shown.
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IV. Computation of Polarizabilities
A. Vacuum Polarizabilities for Benzene.Several ab initio

studies of the polarizability tensor of benzene have been

performed using various formalisms. The finite field (FF)
method has been applied to either Hartree-Fock energies,19-21

MP-2,21,22or approximate MP-423 correlation corrected Hartree-
Fock energies. These studies only dealt with static polarizabili-
ties. Alternatively, static polarizabilities have been computed
either by the coupled perturbed Hartree-Fock (CPHF) method,
with21,24or without21,25,26MP-2 correlation included, or by the
derivative Hartree-Fock method.27

Some studies to date have dealt with effects of electron cor-
relation21-24,28 but only in one of these29 were dynamic polar-
izabilities computed. In the latter case these were derived using
a sum over states type expression and the coupled cluster ef-
fective Hamiltonian (CCEH) approach, implemented at the SD
level of theory. Finally, dynamic but uncorrelated polarizabilities
were obtained using time-dependent Hartree-Fock (CPHF)
theory30 or through the random phase approximation (RPA).31

Table 1 summarizes what we believe the individual authors took
as their best theoretical estimates of the polarizability tensor of
benzene using uncorrelated theory. Table 2 displays similar
results using methods accounting for electron correlation.

It is well-established that the computation of molecular
polarizabilities makes special requirements as to the polarization
and diffusiveness of the basis set employed. Consequently,
several ways of augmenting existing, either energy or geometry
optimized basis sets have been explored.

Only few of these, however have been successful as to simul-
taneous convergence of more than a single molecular property,
i.e., the polarizability. For example, on reoptimizing a basis set
to yield an improved description ofR, the validity is put to
question if the Hartree-Fock energy increases,25 if at all inves-
tigated. Also, in studies concerned with effects of electron cor-
relation, results would appear more conclusive if consensus
existed as to the Hartree-Fock limit of the benzene polariz-
ability.

B. ANO Polarizabilities of Benzene Using Linear Response
Theory. Thus motivated we computed ab initio polarizabilities
of benzene using MCSCF linear response theory. This allows
the evaluation of dynamic polarizabilities, both at the Hartree-
Fock level and at various levels of correlation. However, to
assess the importance of electron correlation, we first exhausted
the one-electron space, systematically, through the use of the
ANO basis sets by Widmark et al.32,33Subsequently, we imposed
a correlated description, for which the ANO basis actually was
designed.

Almlöf et al.34 have suggested certain ways of enlarging the
ANO basis set to maintain a balanced description of the entire
orbital space. Following such guidelines gives an expansion as
illustrated in Figure 5. The numbers in parantheses designate
how the totally decontracted ANO set, 14s9p4d/8s4p (or
14s9p4d3f/8s4p3d in case of added polarization functions) has
been contracted for carbon and hydrogen, respectively.

A certain level of electron correlation in the MCSCF
procedure is specified by choosing a complete active space
(CAS) according to the natural occupation numbers obtained
from MP-2 computations. With the molecular symmetry and
orientation as described below, the specification of the active
orbitals refers to the following symmetry species: ag, b3u, b2u,
b1g, b1u, b2g, b3g, and au. In this way, the smallest CAS, denoted
[00002121] in Table 6 and 7, corresponds to theπ-space in a
minimal basis computation. Extending this CAS to include a
larger fraction of theπ-π correlation gives [00003231] with
two correlating orbitals for each occupied.

The [432/32] basis set was employed in all CAS computations
such that the smaller CAS includes 104 determinants whereas

Figure 3. The refractive index of liquid benzene atF ) 0.8765 g/cm,
293.15 K as a function of frequency. Values have been derived
according to the simple (eq 25) and the Lorentz-Lorenz (eq 22) model
for refractivities. In (a) HF polarizabilities from vacuum computations
have been employed, as opposed to (b) were ISCRF polarizabilities
were employed usingε ) 1 + 4π-〈R〉. (c) Depicts the same situation
as in (b) but for the ISCRF method based onε ) (3 + 8π-〈R〉)/3 -
4π-〈R〉). Also shown are experimental refractivities corresponding to
the IR region and the UV-VIS region.

Figure 4. Schematic representation of the ISCRF method. The SCRF
model gives molecular polarizabilities from the dielectric function,
whereas the other model connects the dielectric function with micro-
scopic optical susceptibilities.
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the larger includes 1788. Regarding the geometry of benzene,
we userCC ) 1.395 Å andrCH ) 1.085 Å,35 close to the more
frequent experimental values:rCC ) 1.397 Å andrCH ) 1.084
Å,36 and rCC ) 1.3964 Å andrCH ) 1.0831 Å.37

All computations were carried out with the cartesian origin
coinciding with the center of mass and the highest possible

Abelian symmetry (D2h). The molecule was oriented with the
molecular plane coincident with the cartesianxyplane and with
two carbon atoms along they axis.

C. Condensed Phase Polarizabilities.The ISCRF approach
is used to describe liquid benzene using the MCSCRF procedure
iteratively. The MCSCRF procedure was originally devised to

TABLE 1: Selected ab Initio SCF Polarizabilities for Benzenee

ν ) 0 au ν ) 0.0774 au

basis set Rxx Rzz Rxx Rzz rCC rCH ref methoda

Sadlej 77.54 44.54 80.81 45.78 1.384 1.072 [29]
6-31G (sd, sp) 79.01 42.17 1.395 1.085 [23] FF
Sadlej 79.47 45.45 82.95 46.74 1.395 1.085 [31] RPAb

6-31G+G(3d, 3p) 77.51c 44.69 [24] CHF
C:TZ2P 76.94 41.36 1.397 1.084 [27] DHFH:TZP
DZPP 73.5 41.4 [20] FF
4-31G (C: p, d) 74.16d 39.48 77.27 40.63 1.384 1.072 [30] TDHF
[14s8p4d/9s6p4d] 79.14 45.28 1.395 1.085 [26] CHF[8s3p/6s3p]
Sadlej 79.46 45.45 1.395 1.085 [25] CHF
4-31G (C: p,d) 74.21 39.47 1.384 1.072 [22] FF
Dunnings DZ 71.87a 32.02 1.4 1.09 [19] FF
3-21G (C: p, d) 73.82d 38.39 [21] CPHF
3-21G (C: p, d) 73.82d 38.46 [21] FF
ANO (C: p, d) 78.29 43.72 1.3902 1.0862 [28] RPA

a These methods are discussed in section IV.b The polarizabilities were calculated using the Cauchy moments given in the paper withk ranging
from 1 to 4.c Converted from MKSA units according to 1 au) 1.6488× 10-41 C2 m2 J-1. d Converted from electrostatic units according to 1 au
) 1.48189× 10-25 cm3. e The values listed are those that the individual authors took as their best estimates. Polarizabilities are displayed in atomic
units and bond lengths in angstroms.

TABLE 2: Selected ab Initio Correlated Polarizabilities for Benzene Computed in Previous Studiesc

ν ) 0 au ν ) 0.0774 au

basis set Rxx Rzz Rxx Rzz rCC rCH ref method

6-31G (sd, sp) 79.50 42.24 1.394 1.085 [23] SDQ-MP4
Sadlej 82.02 45.19 85.49 46.42 1.384 1.072 [29] CCSD-EH
4-31G (C: p, d) 76.02 41.28 1.384 1.072 [22] FF MP-2
3-21G (C: p, d) 75.64a 40.15 [21] FF MP-2
Dunnings DZ 71.14 37.63 1.3902 1.0862 [28] MCSCFb

a Converted from electrostatic units according to 1 au) 1.48189× 10-25 cm3. b Cubic response theory using a CAS[00004242].c The
values listed are those that the individual authors took as their best estimates. Polarizabilities are displayed in atomic units and bond lengths in
angstroms.

TABLE 3: Polarizabilities, rxx (au) at Seven Frequencies, Computed at the Hartree-Fock Level Using Various Levels of
Contraction of the ANO Basis Set

λ(nm)
ν(au)

∞
0

1907
0.0239

1064
0.0428

632.8
0.0720

589
0.0774

514.3
0.0886

457.9
0.0995

3s2p1d/2s1p 75.022 75.296 75.915 77.643 78.080 79.117 80.317
4s3p2d/3s2p 79.615 79.923 80.619 82.565 83.057 84.229 85.585
4s3p2d1f/3s2p1d 79.791 80.101 80.799 82.752 83.246 84.422 85.783
5s4p3d/4s3p 79.703 80.015 80.717 82.684 83.182 84.367 85.741
5s4p3d2f/4s3p2d 79.671 79.981 80.682 82.645 83.142 84.325 85.695
6s5p4d/5s4p 79.739 80.050 80.755 82.726 83.225 84.413 85.791
6s5p4d3f/5s4p3d 79.712 80.023 80.726 82.693 83.190 84.376 85.750
7s6p4d/6s4p 79.720 80.032 80.736 82.708 83.207 84.396 85.774
7s6p4d3f/6s4p3d 79.695 80.006 80.709 82.675 83.172 84.357 85.731

TABLE 4: Polarizabilities, rzz (au) at Seven Frequencies, Computed at the Hartree-Fock Level Using Various Levels of
Contraction of the ANO Basis Set

λ(nm)
ν(au)

∞
0

1907
0.0239

1064
0.0428

632.8
0.0720

589
0.0774

514.3
0.0886

457.9
0.0995

3s2p1d/2s1p 39.792 39.868 40.041 40.513 40.630 40.906 41.220
4s3p2d/3s2p 45.109 45.217 45.459 46.127 46.293 46.685 47.134
4s3p2d1f/3s2p1d 45.461 45.571 45.819 46.503 46.673 47.075 47.534
5s4p3d/4s3p 45.323 45.436 45.690 46.391 46.565 46.977 47.448
5s4p3d2f/4s3p2d 45.376 45.490 45.744 46.446 46.621 47.034 47.506
6s5p4d/5s4p 45.498 45.613 45.872 46.587 46.765 47.186 47.668
6s5p4d3f/5s4p3d 45.445 45.560 45.817 46.529 46.707 47.126 47.606
7s6p4d/6s4p 45.537 45.653 45.913 46.629 46.808 47.230 47.714
7s6p4d3f/6s4p3d 45.476 45.591 45.849 46.561 46.739 47.159 47.640
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model molecular properties of a molecule in infinite dilution
(such that the dielectric constant is unaffected by the presence
of the solute). Here, we consider the benzene molecule solvated
by benzene and accordingly, the assumption of infinite dilution
breaks down, hence the iterative update ofε(ω).

Further, we consider the ISCRF procedure at the Hartree-
Fock level only, noting that extension of SCRF to MCSCRF is
straightforward, being merely a question of computational
resources. The individual SCRF computations, one for each
frequency ofε(ω), were all performed using the [432/32] basis
set. In Table 8 some representative polarizabilities for succes-
sive iterations show the rapid convergence of the ISCRF
procedure.

For reasons of comparison, the same geometry was used as
for the vacuum computations, with the benzene molecule placed
with its center of mass at the center of the spherical cavity of
radiusRcav ) 3.680 Å.

We note that the cavity parameter introduces an element of
arbitrariness in the (MC)SCRF method. Here, however, we
simply comply with the common convention and chooseRcav

as the distance from the center of mass to the outermost atom
plus the van der Waals radius of this atom.

Finally, the multipole expansion of the molecular charge
distribution includes charge moments up tol ) 10 which was
shown to give an appropriate representation of the charge
distribution.

V. Results and Discussion: Gas Phase Polarizabilities

A. Hartree-Fock Level.Results of the basis set investigation
are displayed in Tables 3 and 4. On decontraction from [321/
21] to [432/32] Rxx generally increases by∼6% andRzz by
∼14%. Adding polarization functions yields [4321/321], and
RzzandRzz increase by∼0.3% and∼0.8%, respectively. Further
decontraction of the [432/32] set results in small increases of
∼0.2% and∼0.6% for Rzz andRzz.

In Figure 5 we illustrate general trends of this decontraction/
expansion process. It is seen that decontraction generally affects
Rzz more thanRxx, which then converges faster thanRzz. Also,
augmentation with polarization functions has a more pronounced
effect onRzz, in accordance with conclusions of others:19,20Rzz

is the more difficult component to describe.
If changes of less than∼0.2% in the polarizabilities are taken

as insignificant fluctuations, from Figure 5 we learn that addition
of polarization functions is without effect for basis sets larger
than [432/32]. However, it takes decontraction up to [654/54]
to obtain convergence forRzz. It appears then that the description
of R definitely requires polarization functions on carbon, but
that residual improvements are obtained through increased
flexibility in the diffuse part of the basis set. Thus, inclusion of
f functions is of secondary importance, as also anticipated by
the choice of basis sets in most previous studies.

TABLE 5: Hartree -Fock Polarizabilities as Obtained for Different Basis Sets, Geometries, and Integral Representationb

ν ) 0 au ν ) 0.0774 au

basis set Rxx Rzz Rxx Rzz rCC rCH

Sadlej 77.531 44.541 80.373 45.615 1.3840 1.0720
4-31G (C: p, d)a 74.183 39.443 77.267 40.640 1.3840 1.0720
Sadleja 79.461 45.453 82.942 46.736 1.3950 1.0850
Sadlej 79.468 45.227 82.948 46.510 1.3950 1.0850

a Integrals evaluated in Cartesian basis.b Polarizabilities are displayed in atomic units and bond lengths in angstroms.

TABLE 6: MCSCF Polarizabilities, rxx (au) Computed for Different Types of CAS Using the [432/32] Basis Seta

λ(nm)
ν(au)

λ(nm)∞
ν(au)0

λ(nm)1907
ν(au)0.0239

λ(nm)1064
ν(au)0.0428

λ(nm)632.8
ν(au)0.0720

λ(nm)589
ν(au)0.0774

λ(nm)514.3
ν(au)0.0886

λ(nm)457.9
ν(au)0.0995

00002121 74.283 74.525 75.070 76.581 76.959 77.856 78.884
00003231 76.434 76.707 77.332 79.035 79.467 80.492 81.675

a The individual CAS is specified by the number of active orbitals for the following symmetry species; ag, b3u, b2u, b1g, b1u, b2g, b3g, and au,
respectively.

TABLE 7: MCSCF Polarizabilities, rzz (au) Computed for Different Types of CAS Using the [432/32] Basis Seta

λ(nm)
ν(au)

λ(nm)∞
ν(au)0

λ(nm)1907
ν(au)0.0239

λ(nm)1064
ν(au)0.0428

λ(nm)632.8
ν(au)0.0720

λ(nm)589
ν(au)0.0774

λ(nm)514.3
ν(au)0.0886

λ(nm)457.9
ν(au)0.0995

00002121 42.273 42.359 42.554 43.084 43.216 43.524 43.874
00003231 45.618 45.735 45.996 46.717 46.897 47.321 47.806

a The individual CAS is specified by the number of active orbitals for the following symmetry species; ag, b3u, b2u, b1g, b1u, b2g, b3g, and au,
respectively.

Figure 5. Maximum changes in polarizability components of Benzene,
calculated at the HF level, on expansion of the ANO basis set. Vertical
arrows correspond to decontraction and horizontal arrows to addition
of polarization functions. Also given is the change in the Hartree-
Fock energy (10-3 au) and the numbers of contracted orbitals. The
number of primitive functions for the left row is 486 and 702 for the
polarization augmented row.
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To extend the comparisons between our determinations ofR
and previous studies, we performed computations using other
geometries, integral representations and basis sets, as displayed
in Table 5. Adopting the geometry of Perrin et al.22 and using
the Sadlej basis set,38 static polarizabilities quoted by Stanton29

(see Table 1) are reproduced. However, for the corresponding
dynamic polarizabilities there seems to be some discrepancy.
Comparing the static polarizabilities obtained by Perrin et al.
and Shashi et al.30 using the (pd) augmented 4-31G basis set, it
appears that TDHF and FF give almost equivalent polarizabili-
ties. However, to reproduce these results and the additional
frequency dependent numbers by Shashi, we need to perform
the response computations using cartesian integral representa-
tion. Analogously, the Sadlej polarizabilities of Lazzeretti26,31

computed at our geometry are reproduced only if evaluating
integrals in the Cartesian basis. Apart from the dynamic polar-
izabilities quoted by Stanton, different computational schemes
produce almost identical numbers (see also ref 21), when taking
account of differences due to choice of integral representation.
It is unfortunate, however, that the latter has been given no
attention since the lack of such differences is indicative of the
HF limit. From Table 5 we learn that for basis sets of Sadlej
quality effects of integral representation may amount to∼0.5%.

To assess if our ANO polarizabilities are close to the HF
limit, we consider the convergence ofR in conjunction with
related molecular properties. From Figure 5 it appears that, when
R converges, the Hartree-Fock energy still improves on
expansion of the basis. This leads us to believe that expansion
beyond [764/64], most likely, will leaveR unaltered. From Table
9 we see that excitation energies (computed as poles of the
response function) for the1B1u and1B2u states converge quickly,

whereas it takes decontraction up to [764/64] in order for the
1E1u excitation energy to converge. For the1B1u and1B2u states,
these values are within∼0.7% of the high level RPA values of
a recent study,39 whereas the1E1u excitation energy is∼3%
off.

Considering differences between the two representations of
the oscillator strengths for the allowed transition to1E1u (as also
given in Table 9) reveals no convergence. On the other hand,
the two representations yield very similar numbers, an agreement
much better than in ref 39. Although we attain convergence in
R, the above excludes anything but a tentative estimate of the
HF limit: sets such as [764/64] or larger should give result close
to the HF limit.

A qualified estimate of the HF limit ofR has been attempted
by Lazzeretti et al.26 who arrived atRxx ) 79.4 au andRzz )
46.9 for the static limit. From Table 3, it appears that our
calculations forRxx are approaching a value of 79.7 au, thus
slightly higher than Lazzeretti et al. In contrast, 45.5 au forRzz

(Table 4) is significantly lower than their estimate. The latter
descrepancy is far too large to be ascribed to different uses of
integral representation, assuming that neither Lazzeretti et al.
nor we have attained the HF limit.

For all practical purposes we concluded that the [432/32] set,
composed of 192 contracted functions, represented the best
compromise between tractability and accuracy. In terms ofR it
is comparable to the Sadlej basis set of similar size, which
generally is accepted as a high quality polarization basis set.
Therefore, all further investigations were performed with this
set unless otherwise stated.

B. Effect of Electron Correlation. Comparison of Tables 1
and 2 reveals that all studies but one28 concerned with electron

TABLE 8: Average Polarizabilities, 〈r〉 (au) at Four Representative Frequencies, Computed at Successive Iterations during the
Iterative Implementation of the ISCRF Procedurea

λ(nm)
ν(au)

∞
0

514.259
0.08860

265.986
0.17130

192.983
0.23610

vacuum 68.113 71.714 86.506 143.148
1. iteration 74.208 78.768 98.564 196.809
2. iteration 74.578 79.232 99.633 208.208
3. iteration 74.600 79.262 99.723 210.292
4. iteration 74.601 79.264 99.730 210.662
5. iteration 74.601 79.264 99.731 210.728
6. iteration 74.601 79.264 99.731 210.739

a The dielectric constant is updated according toε ) 1 + 4πN 〈R〉.

TABLE 9: Hartree -Fock and CAS Predictions of the Three Lowest Singlet Excitations Observed Experimentally for Gas
Phase Benzenea

B2u
b

B1u
c

B3u
b

B2u
c

B3u + B2u
b

E1u
c

Oscillator strengths
velocity-length

HF/ANO[3s2p1d/2s1p] (5.90) (5.84) 7.55 0.7209-0.7213
HF/ANO[4s3p2d/3s2p] (5.87) (5.80) 7.43 0.7527-0.7447
HF/ANO[4s3p2d1f/3s2p1d] (5.86) (5.81) 7.42 0.7415-0.7444
HF/ANO[5s4p3d/4s3p] (5.85) (5.79) 7.36 0.7115-0.7081
HF/ANO[5s4p3d2f/4s3p2d] (5.84) (5.80) 7.35 0.6936-0.6938
HF/ANO[6s5p4d/5s4p] (5.85) (5.79) 7.31 0.6036-0.6017
HF/ANO[6s5p4d3f/5s4p3d] (5.84) (5.80) 7.31 0.5967-0.5977
HF/ANO[7s6p4d/6s4p] (5.85) (5.79) 7.24 0.3995-0.3973
HF/ANO[7s6p4d3f/6s4p3d] (5.84) (5.80) 7.25 0.4074-0.4069
CAS[00002121] (7.14) (4.64) 7.93 0.698-0.6933
CAS[00003231] (6.78) (4.75) 7.57 0.667-0.664

observed statesd Ã B̃ C̃

ref 52 6.05-6.70 4.64-5.46 6.81-7.29
ref 53 6.0348-6.204 4.787-4.902 6.866

a The corresponding transition moments to the excitation energies given in parenthesis vanish due to theD2h symmetry. In the CAS computation
the [432/32] basis set was employed.b Symmetry of excited state inD2h. c Symmetry of excited state inD6h. d The experimental excitation energies
are given as the origin and the maximum of the absorption band, respectively.
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correlation reach the same conclusion: correlation increasesR.
In contrast, from Tables 6 and 7 we learn that CAS computa-
tions, limited to theπ subspace, generally result in a lowerR
relative to the HF result, being most pronounced at high
frequencies. For [00002121],Rxx decreases with∼8% andRzz

with ∼7%. The effect is less pronounced for [00003231] where
Rxx decrease with∼5% andRzz is rather unaffected. In case of
the [00003231] CAS, a similar decrease inR was computed by
Norman et al.,28 although with a smaller basis set. Expanding
the π CAS to [00004242], as recommended by Roos et al.,40

was hampered by convergence problems for the [432/32] set.
According to Norman et al.,28 however, this does not alter the
above conclusion. Also, we find that the dispersion is decreased
when correlation is introduced, as is most evident for [00002121],
with a ∼2 au decrease inRzz and∼0.4 au decrease inRzz. The
description of excitation energies for the dipole forbidden
transitions (1A1g f 1B2u) and (1A1g f 1B1u) is improved by
correlation as seen from Table 9. The latter transition and
especially the allowed (1A1g f 1E1u) still overestimate experi-
ments, however. Such trends are generally accepted for MCSCF
excitation energies and arise because dynamic correlation is
poorly accounted for in CAS computations.28,40-42 Better
agreement is obtained with methods which also account for the
dynamic correlation (refs 39 and 43 and references therein).
For example, second-order perturbative schemes, based on CAS
wave functions, significantly improve CAS excitation ener-
gies.40,42This may indicate that the decrease inR observed for
CAS computations is due to insufficient accounting of dynamic
correlation. The increase inR seen for MP2 corrected HF
computations thus indicates that dynamic correlation has an
effect onR which is opposite of the effect of static correlation.

C. Comparisons with Experiment. The Cotton-Mouton
effect or the temperature dependence of the Kerr effect both
lead to polarization anisotropies.44,45 Neither, however, offers
a unique determination of the anisotropy. Using the Cotton-
Mouton effect requires additional information on the magnetic
anisotropy, and in the case of the Kerr effect, static polarization
anisotropies must be determined. Alternatively, depolarization
measurements in concert with refractivity measurements have
been used for determining polarization anisotropies.

The classical expression for the depolarization ratio is given
by46

where I V
h and I V

v, respectively designate the intensity of hori-
zontally and vertically scattered light. For symmetric top
molecules, the polarization anisotropy is particularly simple

Here (|) refers to the parallel and (⊥) to the perpendicular
component, such that the average molecular polarizability
becomesR ) 1/3(R⊥ + 2R|). Traditionally,R is obtained from
refractivities using the appropriate relation from section II.
Therefore, for symmetric top molecules, all polarizability
components can be determined by combining depolarization and
refractivity data.

To avoid reference to more than one type of experiment, we
instead computed depolarization ratios directly from our ab initio
polarizabilities. Figure 1a displays depolarization ratios derived
from HF polarizabilities for various basis sets. Also shown are
more recent experimental determinations ofFV obtained from

Rayleigh scattering measurements on benzene vapor. Compari-
sons with experiment are relevant only above∼1.8 eV where
nonelectronic contributions toR can be disregarded (to a first
approximation). Also, comparisons should not be extended
above∼4.5 eV where the first electronic absorption of benzene
originates.

The experimental numbers fall betweenFV corresponding to
the [321/21] basis set on the one side, and the [432/32], Sadlej,
and [7643/643] sets on the other side. Judging fromFV alone, it
is not possible to assess whether the [321/21] or the [432/32]
gives the better description. However, we can conclude that the
[432/32] set does improve the description ofFV relative to the
Sadlej set. Also, the larger [7643/643] basis set does not improve
the description ofFV significantly, justifying our general use of
the [432/32] set.

In Figure 1b, depolarization ratios derived for CAS polariz-
abilities are displayed along with the corresponding uncorrelated
numbers. Imposition of the [00002121] CAS causes a small
decrease inFV relative to the HF result which, however, increases
with frequency. For the [00003231] CAS this effect is more
outspoken. Thus, in terms of depolarization ratios, accounting
for static correlation alone in fact leads to a poorer description.

VI. Results and Discussion: Refractive Index

Calculation of the refractive index requires information on
the density of the phase considered. For the gas phase we used
a virial expansion47 applicable at moderate pressures and
temperatures, and for the liquid phase, the tabulated value,48 F
) 0.8765 g/cm3 valid at 293.15 K was used. For both phases
of benzene, we derived refractivities using eq 25 and eq 22.
These apply for isotropic situations only and with vanishing
magnetization of the medium. The latter condition we confirmed
by computing static magnetizabilities along with the polariz-
abilities. Quite generally, we observed that these magnetizabili-
ties were three orders of magnitude smaller that the correspond-
ing polarizabilities.

A. Gas Phase of Benzene.Refractivities calculated at 1 bar
of pressure and 293.15 K are shown in Figure 2 along with the
very sparse experimental data.49 Not surprisingly at these
densities, the classical internal-field correction is without any
effect. Regarding the dispersion, the refractivities show a smooth
increase with frequency, but begin to diverge around 6.5 eV
due to the (1A1g f 1E1u) transition at 7.43 eV. As seen from
Table 9, this dipole transition is the first allowed forD2h

symmetry, the two lower being allowed only if mixing of states
and coupling to the vibrational subsystem is considered.
Although the response formalism does account for dipole
forbidden transitions, in terms of excitation energies, the
corresponding absorption peaks lack in the dispersion curve for
the polarizabilities. In other words, from Table 9 we know that
additional peaks around∼5.8 eV should occur for the dispersion
curves in Figure 2, but are absent due to the high symmetry of
the benzene molecule. We consider this a serious deficiency of
the current approach.

As to the correctness of the refractive indices calculated below
frequencies where inelastic light scattering occurs, we have very
little experimental work to refer to. To our knowledge only
Prytz49 has measured the refractive index of benzene vapor at
ambient conditions. Although close agreement with experiment
is seen from Figure 2, no firm conclusion should be based on
such sparse data. We therefore urge that more up-to-date
measurements be reported.

B. Liquid Benzene. Figure 3 depicts three different ap-
proaches to the calculation of the refractive index, differing by

FV )
I V

h

I V
v

) γ2

15R2 + 4
3

γ2
(26)

γ ) (R| - R⊥) (27)
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the polarizabilities used in eqs 25 and 22. In Figure 3a, we
display results for the refractive index as derived from gas phase
polarizabilities. Hence, comparing the refractive index, as
derived from either eq 25 or eq 22, quantifies the importance
of the Lorentz internal field, for isolated molecules at liquid
densities. In contrast, Figure 3b displays the situation where
the polarizabilities have been derived using the ISCRF proce-
dure, updating the dielectric constant asε ) 1 + 4π-〈R〉. Thus,
in this approachRsol is derived quantum mechanically, and the
internal field neglected in the succesive derivations of the
dielectric constant. The results presented in Figure 3c are similar
to those of Figure 3b, but differs to the extend that the ISCRF
procedure now employs the internal field assumption, that is
updating the dielectric constant asε ) (3 + 8π-〈R〉/3 - 4π-
〈R〉.

Along with the theoretical refractivities in Figure 3 are
experimental refractivities for the IR region as tabulated by
Bertie et al.,50 and for the UV-VIS region as given by the
Sellmeier formula.51 The latter extends to long wavelengths since
it accounts for the electronic contributions exclusively, but
limited to ∼4.5 eV where the first electronic absorption takes
place for liquid benzene.48 Therefore, the difference between
these numbers and those of Bertie et al. may be an experimental
indication of the importance of nonelectronic contributions to
the refractive index. To assess the validity of the Sellmeier
formula, comparisons with other observations for the UV-VIS
region were made, and the agreement found to be satisfactory.

Focusing on Figure 3a, we see that calculating the refractive
index from eq 25 using vacuum polarizabilities, underestimates
the experimental results. The traditional remedy is the inclusion
of the internal field correction, and from Figure 3a we confirm
that this simple correction works quite well, in fact all the way
up to 4 eV. At higher frequencies we note that the Lorentz
internal-field correction results in an enhanced dispersion,
relative to results obtained with eq 25.

Including molecular interactions specifically, using the ISCRF
approach, but neglecting internal field effects, underestimates
the experimental result, as confirmed from the Figure 3b. If we
now include the internal field in the final evaluation of the
refractive index, from Figure 3b we observe significantly
enhanced refractivities relative to experiment. At high frequen-
cies the dispersion becomes unphysically large, and for the last
frequency point we in fact encounter a breakdown of eq 22,
i.e., 3e 4π-〈R〉. This is a well-known problem for the Lorenz-
Lorentz model for high polarization states of the medium.2 The
divergence of the dispersion in Figure 3b is not caused by
lowering of the (1A1g f 1E1u) transition due to the ISCRF
procedure (which would have the same effect) since, otherwise,
both curves in Figure 3b would display this feature. Consistent
use of the Lorentz internal field and the ISCRF procedure
requires consideration of the internal field, both in the updating
of ε and the evaluation of the refractive index. From Figure 3c
it is clear that such an approach leads to a behaviour even worse
than that seen in Figure 3b: now the refractive index diverges
for the two highest frequency points. Also, from Figure 3c we
see that it is the use of eq 22 instead of eq 25 which hampers
the description. In fact, using eq 25 underestimates the refractive
index, despite that the internal field has been taken into
consideration in the ISCRF procedure.

The general conclusion of Figure 3 is that the Lorenz-
Lorentz equation, employed with gas phase polarizabilities, gives
close agreement with experiment. This illustrates the general
and well-known success of eq 22 for describing the refractive
index of many nonpolar liquids. Closer inspection of Figure 3a

reveals that eq 22 yields refractivities slightly larger than the
experimental data. This implies either of the two conditions:
either the Lorentz model significantly exaggerates the actual
internal field or the specific solvent interactions are negligible
or counteract the effect of the internal field. That ISCRF
refractivities calculated with eq 25 remain below experiment,
while those calculated from eq 22 may become unphysical,
indicates that the Lorentz internal-field model is hypersensitive
to the polarization state of the medium.

Evidently, our attept at a consistent description of the
refractive index, treating the specific molecular interactions
quantum mechanically and the screening of the optical field
classically, bares little fruit, which we ascribe to the simplicity
of the Lorentz model. On the other hand, we have illustrated
an iterative use of the MCSCRF method, allowing molecular
optical properties to be determined self-consistently, with respect
to the corresponding macroscopic properties. Hence, implement-
ing the ISCRF model with more appropriate internal field
models seems to be promizing.

VII. Conclusion and Perspective

We have presented a generalization of the classical approach
to calculation of refractive indices, thereby allowing us to treat
the linear response of any material. Concepts regarding the
calculation of refractivities using quantum mechanical models,
together with the simple Lorentz internal field model has been
discussed. An iterative implementation of the MCSCRF pro-
cedure has been devised in order to eliminate reference to the
property calculated, as introduced by the internal field model.

The polarization tensor of our model system, benzene, was
investigated. We performed a full basis set investigation
employing the ANO basis set. From this we conclude that the
medium sized basis set [432/32] gives polarizabilities close to
the HF-limit with reasonable computational times. Final conclu-
sion could not be reached as to a precise HF-limit forR, but
we predict that the calculations with the basis set [7643/643]
are close to it. Contrary to previous conclusions we find that
with an adequate ANO basis set, electron correlation, calculated
using a CAS approach, lowers the polarizability.

The issue of comparing polarizabilities to experimental data
was discussed. Comparisons to experimental depolarization
ratios are inconclusive concerning the importance of electron
correlation and the applicability of the MCSCF method to
benzene. Refractive indices for benzene vapour agree well with
the very limited experimental data, but problems with describing
the correct dispersion appear.

By ISCRF sample computations, we illustrated how specific
molecular interactions can be treated quantum mechanically
while interactions, as mediated by the optical field, are given a
simple classical treatment. Results for the refractive index, as
obtained from a consistent use of the ISCRF procedure, are
inferior to those obtained with gas phase polarizabilities in the
Lorenz-Lorentz equation. This we ascribe to shortcomings in
the representation of the internal field in the Lorentz model.
Clearly, development of more appropriate internal field models
is required along with investigations of the specific nature of
the internal field.
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